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Nonlinear Dirac and diffusion equations in 1+1 dimensions from stochastic considerations
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We generalize the method of obtaining fundamental linear partial differential equations such as the diffusion
and Schrdinger equation, the Dirac, and the telegrapher’s equation from a simple stochastic consideration to
arrive at a certain nonlinear form of these equations. A group classification through a one-parameter group of
transformations for two of these equations is also carried out.
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[. INTRODUCTION semble of particles. However, for simpler visualization we
may follow the Boltzmann approach by analyzing the move-

It is a remarkable fact that some of the fundamental lineament of a single particle. Let a particle have random motion
equations of physics, such as the diffusion and Sdinger in one space dimension moving with a fixed speedWe
equations, the Dirac and telegrapher’'s equations, and th&ssume that it has complete reversal of direction of motion in
Maxwell equations can be obtained by setting up a mastea random manner from time to time, say as with the flip of a
equation from simple stochastic considerations and a modicoin. So this is in accord with Poisson distribution, that is to
fication thereof 1,2]. say, there is a fixed ratefor this reversal and the probability

The transition to a nonlinear equation from a linear equafor reversal in a time intervadt is adt. Let P (x,t)
tion through certain transformations is well known. An ex-[P_(x,t)] be the probability density for the particle being at
ample is the Cole-Hopf transformation that carries over thec at timet and moving to the righfleft). The master equation
linear diffusion equation to the nonlinear Burgers equationfor an infinitesimal time step is
The reverse process of getting a linear diffusion equation
from a nonlinear diffusion equation in the formg/dt P.(X,t+At)=P.(xFAX,t)(1—aAt)+Pi(x*Ax,t)aAt.
=v2(8?¢l/ dv?) has also been studi¢d,4] through a nonlin- (1)
ear transformation. . . ) ) ) )

In this paper, we propose to obtain a class of nonlinear This equation gives rise to the linear equations such as the
equations in a different way by generalizing the method ofPirac, telegrapher’s, diffusion, or S.chmg.er equations In
[1]. The method is simple. The basic inputs can be incorpothe lowest approximation under various circumstances.
rated from considerations and arguments based on physical TO the lowest order ilx andAt, Eg. (1) gives
reasoning to obtain nonlinear equations rather than arbitrary

mathematical transformations. The form of the equations ob- P —a(P.—P.)T P _ ﬂ @)
tained is quite restrictive. However, we do not address the at =T TETUT VT A
deep mathematical significance of the Cole-Hopf transforma-
tion and the like in this method. and the telegrapher’s equation follows by iteration,
In Sec. Il, we briefly review the method used in setting up
some basic linear equations of physics. Then we generalize 9?P. 9?P.. IP.
the procedure of obtaining classes of corresponding nonlin- at; —v? ax{ =—2a (9{ . (©)

ear partial differential equations in Sec. Ill. Next, Sec. IV is
devoted to the construction of the groups under which two of . . . L :
the equations obtained in Sec. I, namely the diffusion equa- The one-d_|men5|.0nal _D|rac_equat|qn IS pbtamgd from Eq.
tion with nonlinearity and the nonlinear telegrapher's equal) oY 'anaiytlc continuation. First we identify.. with u.., -
tion, remain invariant. The similarity transformation and the? <> ¢, M€ /fg‘_’a* and then perform a phase transformation
Lie algebra are constructed to show the transformations uri(x,t)=e MW (x,t). This results in

der which solutions go over to new solutions.
A . A4
|hW:mczaX\If—|chaZa—. (4
II. LINEAR EQUATIONS X

The above-mentioned linear equations have been obtained In the Feynman path-integral formulation through check-
by Gaveauet al. [1] and Ord[2] from stochastic consider- ers moves on space time, 1 has to be replaced by a factor
ation by setting up a master equation. @& has also ar- 1+ (imc?/#4)At for each step on which a reversal does not
rived at the Maxwell equation iril+1) dimensions by a take place, whereas for reversals there is a factor
modification of the master equation. —iAt(mcJ@/h).

Following [1,2], we briefly review how these equations  The Dirac equation in(1+1) dimensions, having two
are achieved and then proceed to nonlinear generalizatioaomponents, has a similar time and space dependence to this
The basic consideration is the correlation over a random erstochastic approach. But for a scalar object we find that the
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linear diffusion equation results, which shows the asymmetnjEq. (10) implies
in derivatives arising out of the random-walk problem.

A generalization to three space dimensions has been car- IA(X,1) IP(x,1)

ried out in[1]. R v U (12
McKeon and Ord5] have shown that if movements back-

ward and forward in time are as well superposed on the AD(X,1) AA(X,1)

previous motion, then the Dirac equation in one dimension . —C ax (13

results without recourse to direct analytic continuation.
To arrive at the linear diffusion equation in a simple way,

where we have seix/At=c.
we setP. =P_.=P anda=1/2At. The master equatiofi)

Equations(10) and (11) may be decoupled by differenti-

reduces to ating the first with respect tband the second with respect to
1 1 X to give
P(x,t+At)= 5P(x—Ax,t)+ EP(X-F AX,t). (5)
FPAXY) L PAXL) . da(x,t) 14
=c
Expanding this in a Taylor series about the poixt) gives at? ax? ot
IP(x,t P?P(x,t) (Ax)? and similarly we get
P(x,t)+ (at )At+- : '=P(x,t)+%( 2) +.-
X 2 2
I“D(Xx,t DXt da(x,t
6) ( )=02 ( )—c ( ). 15

at? ax? ot
and equating the lowest-order terms we get
Equations(13), (14), and (15 are equivalent to Maxwell

P P (AX)* 3P equations i1 + 1) dimensions, Eq(13) being the Lorentz

a2 2At D?’ (@ Condition
whereD = (Ax)%/2At. IAGD 19D (16)
It may be noted that the above equation in the context of X c a

Brownian motion can be obtained from a consideration of a
one-dimensional random walk with a Bernoulli distribution In order to obtain the wave equation for the “vector poten-

of probability and the statistical considerations géiis tial” A, we write
~ (Ax)? 1 da(x,t)
AI:TO AL , (8) c ot =47J(X,t) (17
whereD is a constant. and Eq.(14) becomes
A formal analytic continuatione.g., t—it or D—i#)
leads to the Schobnger equation for free particles. A poten- PA(X, 1) 1 FPA(X.1) 4
tial V(x,t) can be included by adding a term e 2 a2 - ?‘](X't)’ (18)
V(x,t)P(x,t)At to the right-hand side of Ed5).
Ord [2] has obtained the Maxwell equations ift1 di-  gng similarly writing
mensions by a modification of the master equation. We fol-
low his procedure to show how it is done. First Ed) is 1 da(x,t)
modified to = =—4mp(x,t), (19
c OX
P.(x,t+At)=P.(xFAx,t)+a(x,t)At, 9

Eq. (15 becomes the wave equation for the scalar potential

wherea(x,t) is interpreted as a source, and linear combina® (x.1),
tions of P, andP_ will correspond to the potential&(x,t)

and®(x,t). To the lowest order ilhx andAt, Eq.(9) gives FO(x,t) 1 PD(x)
(x.1) .99 e T~ AT, (20)
P08 =22 axe (x,H)At (10)
= a L . . . -
ot "X X X The two definitiong17) and(19) imply that
Writing dJ(x,t)  dp(x,t)
) X + ot =0, (21
At =5[PL(x,t) +P_(x,t)],
2 which is the equation of continuity.
1 (11 The objective of the above long review is to stress the
_ = -~ interesting fact that many of the fundamental linear equa-
() 2 [P+ O =P-D], tions of physics are obtainable from an elementary consider-
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ation of stochastic process. Of course, by no stretch of the P, 5 P,
imagination would we expect the whole of physics to follow o = PiTu— ~tab., (27)
from such a consideration.
JP_ oP_
1. NONLINEAR EQUATIONS — = P.P_taP tv—r—, (28)

The nonlinear diffusion equation in the for(m our no-
tation) and by iteration, a nonlinear analog of the telegraphers
equation results,

JP(x,t) 4 JP(x,t)
= (22 2 2
ot X X P 0Py 3 JP P,
5 U > =—P++P+7+UP+ ox +aP,.
is well known in the literatur¢?7,8,4,9 and the properties of o e (29)

its solutions have been extensively studied.

Now we proceed with an aim at getting the above nonlin- g her generalizations would be to consigeas a com-

ear equation and others out of the master equaldrby ey multicomponent object and readers may amuse them-

suitable modifications. If we consider this to be a phenomg|es by putting objects such as supersymmetric variables,

enological equation, without any recourse to Poisson’s diSPauIi and other matrices, etc., as coefficientsAafin Eq
tribution, then the obvious way to introduce nonlinearity is to ; T '

introduce functions ok andt as multiplicative coefficients
on the right-hand side of Eq1).

Perhaps it would be simplest to replate& by P(x,t)Ax
in Eq. (5), with the resulting equation being

The physical interpretation dP may no longer be the
simple probability that it was in the original master equation.
This may correspond to some appropriate physical attribute
for motion in an inhomogeneous dielectric, viscous medium,
5 or the trajectory in a “graded” index optical fiber, for ex-
IP(x,t) -D J“P(x,1) ample. We expect in this case the step to depend on the

2
ot PEx.b) ax2 23 position x where the step is to be taken. Hence one may
multiply Ax by an appropriate function of P(x) being the
where simplest choice for the function in our first example. Another
analogy that comes to mind is the replacement of the metric
(Ax)? 7, DY 9,,,(X) in general relativity. However, in our case the
T~ TAL (24 replacement is in the underlying space itself and is intrigu-
ing.
Or else, we may treat andt in the same way, that is, set
At—P(x,t)At and Ax—P(x,t)Ax instead of only Ax IV. GROUP ANALYSIS

—POAX, and we get Equations of the forni23) have been analyzed by Munier

et al. [3] and by Hill [4] in detall. It is found that the non-

IP(xt) =DP(x t)&ZLZ’t) (25) linear diffusion equation of the form
(9t ' IX '
. . AN
where both Eqgs.(23) and (25 are nonlinear equations. ot 1 p? (30
Henceforth we seb=1.
It should be noted that this does not mean that any non- ) ) e )
linear equation can be obtained in this way. The conditiodS eauivalent to the classical diffusion equation Ryr
that for At=0 andAx=0 both the left and right side of Eq.
(1) must match is quite a restriction. However, by making P B 9P
use of Eq.(7) one may get many more equations by setting gt ﬁ’ (31)

the source term as a function gf P and its derivatives or
their combinations. This would be analogous to adding terms e introducex such that
to the Lagrangian arbitrarily in the conventional method of
getting equations of motion. 9P
We also see that if the master E@) is modified in the (P t)=—, (32
first term of the right-hand side as oX

P.(X,t+At) and every nonlinear diffusion equation of the form
=P.(XFAX1)(1-P_At)+ P (Xt Ax,t)aAt, P 9 JP
—=—|f(P)— (33
(26) at X X

we get a nonlinear form of the Dirac equation in one spacean be transformed to the following equation with a simpler
dimension, nonlinearity:
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o Py The determining equations for the symmetry group for the
f(P)Ez z/;zﬁ, (34)  diffusion with nonlinearity, Eq(35), are
Monomial Coefficients

whereys(P,t) is the flux associated with E¢33). Hence, for 2P op —0 (A)
this special case the analysis would be similar to that of the” ~ ~" P =
linear diffusion equation. IXat Ix

However, in general the simplest nonlinear equation thaty?p 7x=0 (B)
we would get from the master equation by replacihyg 5 o+
—f(P)Ax in Eg. (5) would be

i 3 &pp=0 ©)
) X
JP P 2 _
=) @5 [9P|P 7pp=0 ©
at x ax| ot
9P\ (£p=260p=0 ®
as in Eq.(23) or X
P 2 —npt7p=0 (F)
P 9 at
Faiiew) 36 (9P| (P —&p=—2mef(P) = 3ép ©
X |\ oJt
Now we proceed to analyze the properties of the solution/X
of Eq.(35) by means of one-parameter groups ak7i8,4,9. JP f'(P)¢ "
For the single dependent varialiteand for the two indepen- "5 = T(P) 7xxt 285+ f(P)
dent variablex andt, we have one-parameter groups of the
form P 9rotp P L= 1(P) =0 Q@

_ B ) where the prime denotes differentiation with respect to the
X1 = TP, €) =X+ ef(X,t,P) + O(€%), argument and subscripts denote differentiation with respect
to the indicated variable. These equations turn out to be the
same as those of the nonlinear diffusion equation of the form

t;=g(x,t,P,e)=t+en(x,t,P)+O(€?), (37)
_Y f(P A 40
P,=h(x,t,P,e)=P+el(x,t,P)+O(€). 7t = ax| (P o (40
. .. considered by Hill4].
Wg folloyv the standarq procedufd,9] to obtaqn the simi- From monomialgA), (B), and(G) it is easily seen that
larity variable and functional form of the solution by solving
the first-order partial differential equation E=£x1),  p=n(t), (41)
aP P {p=2&+T, (42
X, P) —+ n(X,t,P) —={(X,1,P) (38)
IX ot .
wherer is a constant. So
for known functionsé(x,t,P), n(x,t,P), and{(x,t,P). Let {pp=0. (43
From monomial(l) we get
J J J
V=E(,LP) =+ (X, LP) =+ (X LP) Z5 (39 g £(P) - ] »
= £ (P) x— Tt
be a vector field on the spacexU(®), where coordinates _
represent the independent variables, the dependent variabl&®, that either
and the derivatives of the dependent variables up to order 2.
All possible coefficient functions, », ¢ are to be deter- 9 dn
. ) —=— (45)
mined so that the one-parameter group exp¢hus obtained ax dt

would be the symmetry group of the nonlinear equati@s
for the diffusion case and EqR9) for the telegrapher’s case. or
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f(P)

i (46)

PP

that is,
f(P)=a(P+b)™, (47

where a, b, and m denote arbitrary constants. If E¢45)
holds, then from monomigH) and Eq.(44) we obtain

E(x,t,P)=B+vX,
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of the solution satisfies the ordinary differential equation

2f d25+ dS_O 55
(S)w 4. =0 (55

whereas that corresponding to Eq0) is given by

d’s df(s){ds\? ds
(dw) —=0. (56)

2f(5)ﬁ+2 ds wdw

In the case in whicl (P) is given by Eq.(46),

7(X,t,P)=20+2t, (49 _[P+Db)\|_d¢ an} 57
I m ax  at]’
{(x,t,P)=0,
) and for the time derivative of we get
where, 6, andy are arbitrary constants.
Hence, the Lie algebra of infinitesimal symmetries of the 9E 415%¢
equation is spanned by the three vector fields o TP 1=, (58)
IX
J
Vi=—, while substituting Eq(57) into monomial(J) and using Eq.
2 (58) gives
J 8
VZZE, (49) Tt= — ngxx- (59)

Lo ?
Ve X o Tt

and the commutation relations are given by
[Vl ,Vz] =0 ’

[Vi,vz]=Vy, [V2,v3]=2v,. (50

The one-parameter grougs; generated by thes, are

given below. The entries give the transformed points

explevi) (x,t,P)=(Xq,t1,Py),
Gi:(x+e€t,P),
G, (X,t+€,P), (52
Gj:(e“x,e%,P).

Each grougG; is a symmetry group, and B=q(x,t) isa

solution of our nonlinear diffusion equation, so are the func-

tions
PM=q(x—e,t),
P@=q(x,t—e), (52
PR =q(e *x,e%).

The groups we obtain are the same as those for(4H3).
and so is the similarity variablit],

X+«

w= ('[—1——,8)1/2 (53)

However, the functional form

P=s(w) (54

So there are two possibilities arising out of E§8), either
for all constantsm,

9E  PE 9?
KT, (60)
at gx®  at?

or for m=4,
€ BE 9
o _#%_Fn_, 63
at o3 at?

Thus for allm we have
E(X,t,P)=u+oX,
n(x,t,P)=v+pt, (62)

I(x,t,P)=

o (2o p),

whereu, v, o, andp are arbitrary constants and the infini-
tesimal symmetries are spanned by four vector fields,

17 ox

szﬁ,

(63

L2 (pin)
Va=X—~ E( )&_P’

9 (P+b) 4
ot m P’

Va
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and the commutation relations are given by independent determining equations of the symmetry group
are given below.
[V1,V2]=[V1,Va]=[V2,V3]=[V3,v4]=0, Monomial  Coefficient
(64)
#P, P,  mp, =0 @
[V11V3]:V11 [V2,V4]:V2. (9t2 ot
PP, 0P, & =0 (b)
The one-parameter grouf@; generated by the, are Xt dt
PP, &=v%ny ©
G :(x+et,P) Xt
(X 61 1 ’
! 7P, 7= & (d)
ot?
Gy (X, t+€,P),
2i(xt+eP) P 20, — Mt 0P 7
(65 g
, +P.(p, — 2
Gj:(ex,t,(P+b)e?M),
—Piuon—Pin=0 (e
e Py ftt+U2(2§xP+_§xx)+§
Gy:(x,e,(P+b)e” M), X
+Pu(lp, —2£)
and if P=y(x,t) is a solution to our nonlinear diffusion +PL(Lp, &)
equation, so are the functions
tuPi({p, —&)=0 )
0 _ .2, _p3 _
PO=y(x—et,P), (P+) L= v 0= Pi(Lp, —2£))
+P aX(lp, —2&,)
P@=y(xt-eP), +3PLL+PL L
66
( ) +U§Xp++a2§:0 (g)
P(3)=y(e‘fx,t,(P—b)e‘ZE/m),
The solutions are given by
P@=y(x,e”t,(P—b)e’M). £(x,t,PL)=Av?t+B,
7(x,t,P,)=AX+E, (69
The similarity variable in this case is given by {(x,t,P.)=0,
whereA, B, andE are arbitrary constants and the infinitesi-
X+ ad mal symmetries are spanned by the three vector fields
g
=T 5T (67) 0 _
t+ _) Vl_a_x’ space translation,
p
d . .
V,=—, time translation, (70
and the functional form of the solution is at
=p? i h bolic “ iorf i
L\ [2aimp)~1] V3=v t5+xﬁ, yperbolic “rotatiorf in (x,t) space,
P= t+—) s(w)—b. (68
P with the commutation relations

[V1,Vo]=0, [Vq,V3]=V,, [Vp,V3]=v?vy. (71)

Now for the nonlinear form of the telegrapher’s equation
(29), arising out of the nonlinear Dirac equatid@7), the The one-parameter grou® generated by thg; are
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Gi:(x+et,P),
Go:(x,t+¢€,P), (72)
G (x+v2et,t+ex,P,).

This implies that ifP . =z(x,t) is a solution to Eq(29),
so are the functions

P+l:Z(X_ eyt)v
€),

P,3=2z(x—v2et,t—ex),

P, ,=2z(X,t— (73

wheree is any real number.
In order to compare the above vector fields of EZQ)

with those of the linear second-order form of the telegra-
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J
V:_
2ot
(75
5 d
V3_ +&P+,
2ta+ Jd P Jd
Vy=0t—+X——axP,—
AT T T A gp
with commutation relations
[V1,Vo]=[V1,V3]=0, [Vvi,v4]=V,—avs,
(76)

[V2,V3]=0, [Vy,v4]= Ulea [V3,Va]=0.

We have ignored the obvious infinite-dimensional subal-

pher’s equatior(3), we have the corresponding independentdePras in the above analysis.

determining equations of the symmetry group:

Monomial Coefficient
PP, P, ép, =0 (P)
NGRS
PP, P, 7p, =0 Q
NG
(92P+ §X: Nt (R)
x>
PP &=v27y S
oxat
P, \? {p.p,—2mp, t4anp =0 M
pt
P Eu—v2Ext 20%yp, +2a5=0 L)
X
P, ntt_vzﬂxx_2§tP+_2a77t:0 (V)
at
(P+)O {tt—vzgxx—l— 2a§t=O (W)
The solutions are given by
Ex,t,PL)=Kv?t+L,
7(X,t,P)=Kx+M, (74

{(x,t,P,)=—KaxP,+NP, ,

whereK, L, M, andN are arbitrary constants. The infinitesi-
mal symmetries are spanned by the four vector fields

17

V. CONCLUSION

The main objective of this paper was to extend the
method of deducing some fundamental linear partial differ-
ential equations of physics from a consideration of stochastic
arguments to the nonlinear case. We saw that this could be
achieved in a very simple way by modifying the master
equation to obtain the “nonlinear diffusion” equation, a
“nonlinear Dirac equation” in 1 dimensions, and the cor-
responding “nonlinear telegrapher’'s equation.” As a pre-
liminary step towards the analysis of the properties of the
solutions, we have considered the group classification prob-
lem of the first and the last one by means of one-parameter
groups. The infinitesimal symmetry group of the nonlinear
telegrapher’s equation is spanned by a vector field corre-
sponding to a “hyperbolic rotation” ok andt. For our type
of diffusion equation, although the group structure is similar
to that of the standard nonlinear diffusion equation, the ordi-
nary differential equations obtained are different and the re-
sults are similar whem=4 in our case, buin=—3 in the
standard casen{ being the highest power of the dependent
variable in coefficient to the’?/9x? term in the nonlinear
diffusion equation The physical applications of this equa-
tion have been widely studied in the context of gas dynamics
and plasma physics, etc. We expect the other two equations
to have similar important applications in physics with rich
mathematical structure and we leave it for future study.
However, as a comparison of E4Z0) and(75) shows, one
does see explicitly which symmetries get broken when the
equation is modified.
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