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Nonlinear Dirac and diffusion equations in 1¿1 dimensions from stochastic considerations

K. Maharana
Physics Department, Utkal University, Bhubaneswar 751004, India

~Received 2 August 1999!

We generalize the method of obtaining fundamental linear partial differential equations such as the diffusion
and Schro¨dinger equation, the Dirac, and the telegrapher’s equation from a simple stochastic consideration to
arrive at a certain nonlinear form of these equations. A group classification through a one-parameter group of
transformations for two of these equations is also carried out.

PACS number~s!: 02.50.Ey, 05.40.Fb, 05.90.1m
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I. INTRODUCTION

It is a remarkable fact that some of the fundamental lin
equations of physics, such as the diffusion and Schro¨dinger
equations, the Dirac and telegrapher’s equations, and
Maxwell equations can be obtained by setting up a ma
equation from simple stochastic considerations and a m
fication thereof@1,2#.

The transition to a nonlinear equation from a linear eq
tion through certain transformations is well known. An e
ample is the Cole-Hopf transformation that carries over
linear diffusion equation to the nonlinear Burgers equati
The reverse process of getting a linear diffusion equa
from a nonlinear diffusion equation in the form]f/]t
5v2(]2f/]v2) has also been studied@3,4# through a nonlin-
ear transformation.

In this paper, we propose to obtain a class of nonlin
equations in a different way by generalizing the method
@1#. The method is simple. The basic inputs can be incor
rated from considerations and arguments based on phy
reasoning to obtain nonlinear equations rather than arbit
mathematical transformations. The form of the equations
tained is quite restrictive. However, we do not address
deep mathematical significance of the Cole-Hopf transform
tion and the like in this method.

In Sec. II, we briefly review the method used in setting
some basic linear equations of physics. Then we genera
the procedure of obtaining classes of corresponding non
ear partial differential equations in Sec. III. Next, Sec. IV
devoted to the construction of the groups under which two
the equations obtained in Sec. II, namely the diffusion eq
tion with nonlinearity and the nonlinear telegrapher’s eq
tion, remain invariant. The similarity transformation and t
Lie algebra are constructed to show the transformations
der which solutions go over to new solutions.

II. LINEAR EQUATIONS

The above-mentioned linear equations have been obta
by Gaveauet al. @1# and Ord@2# from stochastic consider
ation by setting up a master equation. Ord@2# has also ar-
rived at the Maxwell equation in~111! dimensions by a
modification of the master equation.

Following @1,2#, we briefly review how these equation
are achieved and then proceed to nonlinear generaliza
The basic consideration is the correlation over a random
PRE 621063-651X/2000/62~2!/1683~8!/$15.00
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semble of particles. However, for simpler visualization w
may follow the Boltzmann approach by analyzing the mov
ment of a single particle. Let a particle have random mot
in one space dimension moving with a fixed speedv. We
assume that it has complete reversal of direction of motion
a random manner from time to time, say as with the flip o
coin. So this is in accord with Poisson distribution, that is
say, there is a fixed ratea for this reversal and the probabilit
for reversal in a time intervaldt is adt. Let P1(x,t)
@P2(x,t)# be the probability density for the particle being
x at timet and moving to the right~left!. The master equation
for an infinitesimal time step is

P6~x,t1Dt !5P6~x7Dx,t !~12aDt !1P7~x6Dx,t !aDt.
~1!

This equation gives rise to the linear equations such as
Dirac, telegrapher’s, diffusion, or Schro¨dinger equations in
the lowest approximation under various circumstances.

To the lowest order inDx andDt, Eq. ~1! gives

]P6

]t
52a~P62P7!7v

]P6

]x
, v5

Dx

Dt
, ~2!

and the telegrapher’s equation follows by iteration,

]2P6

]t2
2v2

]2P6

]x2
522a

]P6

]t
. ~3!

The one-dimensional Dirac equation is obtained from E
~1! by analytic continuation. First we identifyP6 with u6 ,
v↔c, imc2/\↔a, and then perform a phase transformati
u(x,t)5e( imc2t/\)C(x,t). This results in

i\
]C

]t
5mc2sxC2 ic\sz

]C

]x
. ~4!

In the Feynman path-integral formulation through chec
ers moves on space time, 1 has to be replaced by a fa
11( imc2/\)Dt for each step on which a reversal does n
take place, whereas for reversals there is a fac
2 iDt(mc2/\).

The Dirac equation in~111! dimensions, having two
components, has a similar time and space dependence to
stochastic approach. But for a scalar object we find that
1683 ©2000 The American Physical Society
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linear diffusion equation results, which shows the asymme
in derivatives arising out of the random-walk problem.

A generalization to three space dimensions has been
ried out in @1#.

McKeon and Ord@5# have shown that if movements bac
ward and forward in time are as well superposed on
previous motion, then the Dirac equation in one dimens
results without recourse to direct analytic continuation.

To arrive at the linear diffusion equation in a simple wa
we setP65P75P anda51/2Dt. The master equation~1!
reduces to

P~x,t1Dt !5
1

2
P~x2Dx,t !1

1

2
P~x1Dx,t !. ~5!

Expanding this in a Taylor series about the point (x,t) gives

P~x,t !1
]P~x,t !

]t
Dt1•••5P~x,t !1

]2P~x,t !

]x2

~Dx!2

2
1•••

~6!

and equating the lowest-order terms we get

]P

]t
5

]2P

]x2

~Dx!2

2Dt
5D

]2P

]x2
, ~7!

whereD5(Dx)2/2Dt.
It may be noted that the above equation in the contex

Brownian motion can be obtained from a consideration o
one-dimensional random walk with a Bernoulli distributio
of probability and the statistical considerations sets@6#,

lim
Dt→0

~Dx!2

2Dt
5D, ~8!

whereD is a constant.
A formal analytic continuation~e.g., t→ i t or D→ i\)

leads to the Schro¨dinger equation for free particles. A poten
tial V(x,t) can be included by adding a term
V(x,t)P(x,t)Dt to the right-hand side of Eq.~5!.

Ord @2# has obtained the Maxwell equations in 111 di-
mensions by a modification of the master equation. We
low his procedure to show how it is done. First Eq.~1! is
modified to

P6~x,t1Dt !5P6~x7Dx,t !1a~x,t !Dt, ~9!

wherea(x,t) is interpreted as a source, and linear combi
tions of P1 andP2 will correspond to the potentialsA(x,t)
andF(x,t). To the lowest order inDx andDt, Eq. ~9! gives

]P6~x,t !

]t
Dt57

]P6

]x
Dx1a~x,t !Dt. ~10!

Writing

A~x,t !5
1

2
@P1~x,t !1P2~x,t !#,

~11!

F~x,t !5
1

2
@P1~x,t !2P2~x,t !#,
y

ar-

e
n

,

f
a

l-

-

Eq. ~10! implies

]A~x,t !

]t
52c

]F~x,t !

]x
1a~x,t !, ~12!

]F~x,t !

]t
52c

]A~x,t !

]x
, ~13!

where we have setDx/Dt5c.
Equations~10! and ~11! may be decoupled by differenti

ating the first with respect tot and the second with respect t
x to give

]2A~x,t !

]t2
5c2

]2A~x,t !

]x2
1

]a~x,t !

]t
~14!

and similarly we get

]2F~x,t !

]t2
5c2

]2F~x,t !

]x2
2c

]a~x,t !

]t
. ~15!

Equations~13!, ~14!, and ~15! are equivalent to Maxwell
equations in~1 1 1! dimensions, Eq.~13! being the Lorentz
condition

]A~x,t !

]x
1

1

c

]F~x,t !

]t
50. ~16!

In order to obtain the wave equation for the ‘‘vector pote
tial’’ A, we write

1

c

]a~x,t !

]t
54pJ~x,t ! ~17!

and Eq.~14! becomes

]2A~x,t !

]x2
2

1

c2

]2A~x,t !

]t2
52

4p

c
J~x,t !, ~18!

and similarly writing

1

c

]a~x,t !

]x
524pr~x,t !, ~19!

Eq. ~15! becomes the wave equation for the scalar poten
F(x,t),

]2F~x,t !

]x2
2

1

c2

]2F~x,t !

]t2
524pr~x,t !. ~20!

The two definitions~17! and ~19! imply that

]J~x,t !

]x
1

]r~x,t !

]t
50, ~21!

which is the equation of continuity.
The objective of the above long review is to stress

interesting fact that many of the fundamental linear eq
tions of physics are obtainable from an elementary consid
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ation of stochastic process. Of course, by no stretch of
imagination would we expect the whole of physics to follo
from such a consideration.

III. NONLINEAR EQUATIONS

The nonlinear diffusion equation in the form~in our no-
tation!

]P~x,t !

]t
5

]

]x F f ~P!
]P~x,t !

]x G ~22!

is well known in the literature@7,8,4,9# and the properties o
its solutions have been extensively studied.

Now we proceed with an aim at getting the above non
ear equation and others out of the master equation~1! by
suitable modifications. If we consider this to be a pheno
enological equation, without any recourse to Poisson’s
tribution, then the obvious way to introduce nonlinearity is
introduce functions ofx and t as multiplicative coefficients
on the right-hand side of Eq.~1!.

Perhaps it would be simplest to replaceDx by P(x,t)Dx
in Eq. ~5!, with the resulting equation being

]P~x,t !

]t
5DP2~x,t !

]2P~x,t !

]x2
, ~23!

where

D5
~Dx!2

Dt
. ~24!

Or else, we may treatx and t in the same way, that is, se
Dt→P(x,t)Dt and Dx→P(x,t)Dx instead of only Dx
→P(x,t)Dx, and we get

]P~x,t !

]t
5DP~x,t !

]2P~x,t !

]x2
, ~25!

where both Eqs.~23! and ~25! are nonlinear equations
Henceforth we setD51.

It should be noted that this does not mean that any n
linear equation can be obtained in this way. The condit
that forDt50 andDx50 both the left and right side of Eq
~1! must match is quite a restriction. However, by maki
use of Eq.~7! one may get many more equations by sett
the source term as a function ofx, P and its derivatives or
their combinations. This would be analogous to adding te
to the Lagrangian arbitrarily in the conventional method
getting equations of motion.

We also see that if the master Eq.~1! is modified in the
first term of the right-hand side as

P6~x,t1Dt !

5P6~x7Dx,t !~12P1Dt !1P7~x6Dx,t !aDt,

~26!

we get a nonlinear form of the Dirac equation in one sp
dimension,
e

-

-
s-

n-
n

s
f

e

]P1

]t
52P1

2 2v
]P1

]x
1aP2 , ~27!

]P2

]t
52P1P21aP11v

]P2

]x
, ~28!

and by iteration, a nonlinear analog of the telegraphe
equation results,

]2P1

]t2
2v2

]2P1

]x2
52P1

3 1P1

]P1

]t
1vP1

]P1

]x
1a2P1 .

~29!

Further generalizations would be to considerP as a com-
plex multicomponent object and readers may amuse th
selves by putting objects such as supersymmetric variab
Pauli and other matrices, etc., as coefficients ofDx in Eq.
~1!.

The physical interpretation ofP may no longer be the
simple probability that it was in the original master equatio
This may correspond to some appropriate physical attrib
for motion in an inhomogeneous dielectric, viscous mediu
or the trajectory in a ‘‘graded’’ index optical fiber, for ex
ample. We expect in this case the stepDx to depend on the
position x where the step is to be taken. Hence one m
multiply Dx by an appropriate function ofx, P(x) being the
simplest choice for the function in our first example. Anoth
analogy that comes to mind is the replacement of the me
hmn by gmn(x) in general relativity. However, in our case th
replacement is in the underlying space itself and is intrig
ing.

IV. GROUP ANALYSIS

Equations of the form~23! have been analyzed by Munie
et al. @3# and by Hill @4# in detail. It is found that the non-
linear diffusion equation of the form

]c

]t
5c2

]2c

]P2
~30!

is equivalent to the classical diffusion equation forP,

]P

]t
5

]2P

]x2
, ~31!

if we introducex such that

c~P,t ![
]P

]x
, ~32!

and every nonlinear diffusion equation of the form

]P

]t
5

]

]x F f ~P!
]P

]x G ~33!

can be transformed to the following equation with a simp
nonlinearity:
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f ~P!
]c

]t
5c2

]2c

]P2
, ~34!

wherec(P,t) is the flux associated with Eq.~33!. Hence, for
this special case the analysis would be similar to that of
linear diffusion equation.

However, in general the simplest nonlinear equation t
we would get from the master equation by replacingDx
→ f (P)Dx in Eq. ~5! would be

]P

]t
5 f 2~P!

]2P

]x2
~35!

as in Eq.~23! or

]P

]t
5 f ~P!

]2P

]x2
~36!

as in Eq.~25!.
Now we proceed to analyze the properties of the soluti

of Eq. ~35! by means of one-parameter groups as in@7,8,4,9#.
For the single dependent variableP and for the two indepen
dent variablesx and t, we have one-parameter groups of t
form

x15 f ~x,t,P,e!5x1ej~x,t,P!1O~e2!,

t15g~x,t,P,e!5t1eh~x,t,P!1O~e2!, ~37!

P15h~x,t,P,e!5P1ez~x,t,P!1O~e2!.

We follow the standard procedure@4,9# to obtain the simi-
larity variable and functional form of the solution by solvin
the first-order partial differential equation

j~x,t,P!
]P

]x
1h~x,t,P!

]P

]t
5z~x,t,P! ~38!

for known functionsj(x,t,P), h(x,t,P), andz(x,t,P). Let

v5j~x,t,P!
]

]x
1h~x,t,P!

]

]t
1z~x,t,P!

]

]P
~39!

be a vector field on the spaceX3U (2), where coordinates
represent the independent variables, the dependent varia
and the derivatives of the dependent variables up to orde
All possible coefficient functionsj, h, z are to be deter-
mined so that the one-parameter group exp(ev) thus obtained
would be the symmetry group of the nonlinear equations~35!
for the diffusion case and Eq.~29! for the telegrapher’s case
e

t

s

les,
2.

The determining equations for the symmetry group for
diffusion with nonlinearity, Eq.~35!, are

Monomial Coefficients

]2P

]x]t

]P

]x

hP50 ~A!

]2P

]x]t

hx50 ~B!

S ]P

]x D 3 jPP50 ~C!

S ]P

]x D 2 ]P

]t

hPP50 ~D!

S ]P

]x D 2 ~zP22jx!P50 ~E!

S ]P

]t D 2 2hP1hP50 ~F!

S ]P

]x D S ]P

]t D 2jP522hxPf ~P!23jP ~G!

]P

]x

2j t5 f ~P!~2zxP2jxx! ~H!

]P

]t
h t5 f ~P!hxx12jx1

f 8~P!j

f ~P!

~I!

P0 z t2 f ~P!zxx50 ~J!

where the prime denotes differentiation with respect to
argument and subscripts denote differentiation with resp
to the indicated variable. These equations turn out to be
same as those of the nonlinear diffusion equation of the fo

]P

]t
5

]

]x F f ~P!
]P

]x G ~40!

considered by Hill@4#.
From monomials~A!, ~B!, and~G! it is easily seen that

j5j~x,t !, h5h~ t !, ~41!

zP52jx1r , ~42!

wherer is a constant. So

zPP50. ~43!

From monomial~I! we get

z5
f ~P!

f 8~P!
@2jx2h t# ~44!

so that either

2
]j

]x
5

]h

]t
~45!

or
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F f ~P!

f 8~P!
G

PP

50, ~46!

that is,

f ~P!5a~P1b!m, ~47!

where a, b, and m denote arbitrary constants. If Eq.~45!
holds, then from monomial~H! and Eq.~44! we obtain

j~x,t,P!5b1gx,

h~x,t,P!52u12gt, ~48!

z~x,t,P!50,

whereb, u, andg are arbitrary constants.
Hence, the Lie algebra of infinitesimal symmetries of t

equation is spanned by the three vector fields

v15
]

]x
,

v25
]

]t
, ~49!

v35x
]

]x
12t

]

]t
,

and the commutation relations are given by

@v1 ,v2#50, @v1 ,v3#5v1 , @v2 ,v3#52v2 . ~50!

The one-parameter groupsGi generated by thevi are
given below. The entries give the transformed poi
exp(evi)(x,t,P)5(x1 ,t1 ,P1),

G1 :~x1e,t,P!,

G2 :~x,t1e,P!, ~51!

G3 :~eex,e2et,P!.

Each groupGi is a symmetry group, and ifP5q(x,t) is a
solution of our nonlinear diffusion equation, so are the fun
tions

P(1)5q~x2e,t !,

P(2)5q~x,t2e!, ~52!

P(3)5q~e2ex,e22et !.

The groups we obtain are the same as those for Eq.~40!
and so is the similarity variable@4#,

v5
x1a

~ t1b!1/2
. ~53!

However, the functional form

P5s~v! ~54!
s

-

of the solution satisfies the ordinary differential equation

2 f ~s!
d2s

dv2
1v

ds

dv
50, ~55!

whereas that corresponding to Eq.~40! is given by

2 f ~s!
d2s

dv2
12

d f~s!

ds S ds

dv D 2

1v
ds

dv
50. ~56!

In the case in whichf (P) is given by Eq.~46!,

z5S P1b

m D F2
]j

]x
2

]h

]t G , ~57!

and for the time derivative ofj we get

]j

]t
5 f ~P!F12

4

mG]2j

]x2
, ~58!

while substituting Eq.~57! into monomial~J! and using Eq.
~58! gives

h tt52
8

m
jxxx . ~59!

So there are two possibilities arising out of Eq.~58!, either
for all constantsm,

]j

]t
5

]2j

]x2
5

]2h

]t2
50, ~60!

or for m54,

]j

]t
5

]3j

]x3
5

]2h

]t2
50. ~61!

Thus for allm we have

j~x,t,P!5m1sx,

h~x,t,P!5n1rt, ~62!

z~x,t,P!5S P1b

m D ~2s2r!,

wherem, n, s, andr are arbitrary constants and the infin
tesimal symmetries are spanned by four vector fields,

v15
]

]x
,

v25
]

]t
,

~63!

v35x
]

]x
1

2

m
~P1b!

]

]P
,

v45t
]

]t
2

~P1b!

m

]

]P
,
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and the commutation relations are given by

@v1 ,v2#5@v1 ,v4#5@v2 ,v3#5@v3 ,v4#50,
~64!

@v1 ,v3#5v1 , @v2 ,v4#5v2 .

The one-parameter groupsGi generated by thevi are

G1 :~x1e,t,P!,

G2 :~x,t1e,P!,
~65!

G3 :„eex,t,~P1b!e2e/m
…,

G4 :„x,eet,~P1b!e2e/m
…,

and if P5y(x,t) is a solution to our nonlinear diffusion
equation, so are the functions

P(1)5y~x2e,t,P!,

P(2)5y~x,t2e,P!,
~66!

P(3)5y„e2ex,t,~P2b!e22e/m
…,

P(4)5y„x,e2et,~P2b!ee/m
….

The similarity variable in this case is given by

v5

x1
m

s

S t1
n

r D s/r ~67!

and the functional form of the solution is

P5S t1
n

r D [(2s/mr)21]

s~v!2b. ~68!

Now for the nonlinear form of the telegrapher’s equati
~29!, arising out of the nonlinear Dirac equation~27!, the
independent determining equations of the symmetry gr
are given below.

Monomial Coefficient

]2P1

]t2

]P1

]t

hP1
50 ~a!

]2P1

]x]t

]P1

]t

jP1
50 ~b!

]2P1

]x]t

j t5v2hx ~c!

]2P1

]t2

h t5jx ~d!

]P1

]t

2z tP1
2h tt1v2hxx

1P1~zP1
22jx!

2P1vhx2P1hx50 ~e!

]P1

]x

j tt1v2~2zxP1
2jxx!1z

1P1v~zP1
22jx!

1P1~zP1
2jx!

1vP1~zP1
2jx!50 ~f!

~P1!0 z tt2v2zxx2P1
3 ~zP1

22jx!

1P1a2~zP1
22jx!

13P1
2 z1P1zx

1vzxP1
1a2z50 ~g!

The solutions are given by

j~x,t,P1!5Av2t1B,

h~x,t,P1!5Ax1E, ~69!

z~x,t,P1!50,

whereA, B, andE are arbitrary constants and the infinites
mal symmetries are spanned by the three vector fields

v15
]

]x
, space translation,

v25
]

]t
, time translation, ~70!

v35v2t
]

]x
1x

]

]t
, hyperbolic ‘‘rotation9 in ~x,t ! space,

with the commutation relations

@v1 ,v2#50, @v1 ,v3#5v2 , @v2 ,v3#5v2v1 . ~71!

The one-parameter groupsGi generated by thevi are
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G1 :~x1e,t,P1!,

G2 :~x,t1e,P1!, ~72!

G3 :~x1v2et,t1ex,P1!.

This implies that ifP15z(x,t) is a solution to Eq.~29!,
so are the functions

P115z~x2e,t !,

P125z~x,t2e!, ~73!

P135z~x2v2et,t2ex!,

wheree is any real number.
In order to compare the above vector fields of Eq.~70!

with those of the linear second-order form of the teleg
pher’s equation~3!, we have the corresponding independe
determining equations of the symmetry group:

Monomial Coefficient

]2P1

]x2

]P1

]x

jP1
50 ~P!

]2P1

]x2

]P1

]t

hP1
50 ~Q!

]2P1

]x2

jx5h t ~R!

]2P1

]x]t

j t5v2hx ~S!

S ]P1

pt D 2 zP1P1
22h tP1

14ahP1
50 ~T!

]P1

]x

j tt2v2jxx12v2zxP1
12az t50 ~U!

]P1

]t

h tt2v2hxx22z tP1
22ah t50 ~V!

~P1!0 z tt2v2zxx12az t50 ~W!

The solutions are given by

j~x,t,P1!5Kv2t1L,

h~x,t,P1!5Kx1M , ~74!

z~x,t,P1!52KaxP11NP1 ,

whereK, L, M, andN are arbitrary constants. The infinites
mal symmetries are spanned by the four vector fields

v15
]

]x
,

-
t

v25
]

]t
,

~75!

v35P1

]

]P1
,

v45v2t
]

]x
1x

]

]t
2axP1

]

]P1
,

with commutation relations

@v1 ,v2#5@v1 ,v3#50, @v1 ,v4#5v22av3 ,
~76!

@v2 ,v3#50, @v2 ,v4#5v2v1 , @v3 ,v4#50.

We have ignored the obvious infinite-dimensional sub
gebras in the above analysis.

V. CONCLUSION

The main objective of this paper was to extend t
method of deducing some fundamental linear partial diff
ential equations of physics from a consideration of stocha
arguments to the nonlinear case. We saw that this could
achieved in a very simple way by modifying the mas
equation to obtain the ‘‘nonlinear diffusion’’ equation,
‘‘nonlinear Dirac equation’’ in 111 dimensions, and the cor
responding ‘‘nonlinear telegrapher’s equation.’’ As a pr
liminary step towards the analysis of the properties of
solutions, we have considered the group classification pr
lem of the first and the last one by means of one-param
groups. The infinitesimal symmetry group of the nonline
telegrapher’s equation is spanned by a vector field co
sponding to a ‘‘hyperbolic rotation’’ ofx andt. For our type
of diffusion equation, although the group structure is simi
to that of the standard nonlinear diffusion equation, the or
nary differential equations obtained are different and the
sults are similar whenm54 in our case, butm52 4

3 in the
standard case (m being the highest power of the depende
variable in coefficient to the]2/]x2 term in the nonlinear
diffusion equation!. The physical applications of this equa
tion have been widely studied in the context of gas dynam
and plasma physics, etc. We expect the other two equat
to have similar important applications in physics with ric
mathematical structure and we leave it for future stu
However, as a comparison of Eqs.~70! and~75! shows, one
does see explicitly which symmetries get broken when
equation is modified.
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